

Comment stimuler les patientes en AMP après un cancer ?

Michaël Grynberg, M.D., Ph.D.

Unité de Médecine de la Reproduction Hôpital Antoine Béclère, Université Paris-Sud INSERM U782 Clamart-France

Epidemiology

Ovarian toxcity

Before chemotherapy

After chemotherapy

Ovarian toxcity

Side effect of chemo / radiotherapy

Mechanisms unclear

Ovarian tissue fibrosis

Apoptosis of primordial and primary follicles

Vascular damage

Follicular activation: burn-out

Blumenfeld et al., Best Pract Res Clin Obstet Gynaecol. 2012

Premature menopause

2819 survivors of childhood cancer and 1065 female siblings

Cumulative incidence of premature menopause higher for cancer survivors than for siblings *Sklar J. Nat. Cancer., 2006*

Premature ovarian failure

Alteration of the follicular ovarian status in childhood cancer survivors having retained regular menstrual cycle

Bath et al., Hum. Reprod., 2003

Ovarian function after CT

Comparison of reproductive hormones in unexposed reproductive-age participants, cancer survivors (low-dose and high-dose), and latereproductive-age women, restricted to regularly menstruating participants not using hormones over the past year. Hormone Late-reproductive (n = 69)Unexposed (n = 63)Low-dose exposure (n = 27) righ-dose exposure (n = 22)8.15^b (7.19-9.23) FSH (mIU/mL) 6.93 (6.09-7.89) 7.93 (6.63-9.47) 10.60^a (8.68-12.95) E₂ (pa/mL) 31.81 (27.27-37.10) 24.54^b (19.85-30.34) 22.95^b (18.10-29.11) 37.45 (32.27-43.47) 39.75 (29.88-52.89) 37.90 (25.54-56.23 30.37 (19.33-47.73) 30.70 (23.40-40.29) Inhibin B (pg/mL) 0.194 (0.13-0.26) AMH (ng/ml) 3.07 (2.17-4.36) 1.99 (1.23-3.24) 0.52* (0.30-0.90) Note: Geometric mean (95% Cl) hormone levelsare shown. Modula djusted formean BMI and race. High-dox-regionare defined as AAD \geq 3 or exposure to pelvic radiation including TB. Low-dose. exposure defined as any cancer treatment that does not meet often a for "high dose exposure." *P<.001 vs. reference unexposed group.</p> ^b P<.05 vs. reference unexposed group. Grach, Ovarian reserve after cancer, Fartil Steril 2012.

Impaired ovarian reserve in a dose-dependent manner among cancer survivors compared with unexposed females of similar age.

Reproductive hormone levels in menstruating survivors exposed to highdose therapy are similar to those in late-reproductive-age women.

Gracia et al., Fertil. Steril., 2012

Ovarian function after CT

20

10

0

Control

Pre-chemo

0.95±0.34

(n = 17)

Post-chemo

3

Control

Pre-chemo

Lutchman Singh et al., British. J. Cancer., 2007

19.24 : 4.56

(n=17)

Post-chemo

Antral follicle count

(n = 21)	(n = 70) ^{a,b}	(n = 13)	(n = 17) ^c	P-value ^d
Ovarian volume per ovary $(cm^3)^r$ $6.8 (4.4-1)^r$ Small follicles per ovary $(n)^r (2-5 \text{ mm})$ $8.0 (5.5-1)^r$ Total follicles per ovary $(n)^r (2, 10 \text{ mm})$ $11.0 (6.5, 10 \text{ mm})$	$\begin{array}{ccc} .1) & 4.8 (1.1-9.5) \\ .5) & 5.0 (0.0-15.0) \\ .5) & 7.5 (0.0-18.5) \end{array}$	2.9 (1.9-5.6) 6.0 (3.0-10.0) 7.0 (3.5, 10.0)	0.8 (0.0-2.0) 0.0 (0.0-1.5) 0.0 (0.0-1.5)	<0.001 ⁷ <0.001 ⁷

Smaller ovarian volume per ovary and a lower number of antral follicles per ovary in childhood cancer survivors when compared to controls

Risk calculator

women / risk of amenorrhea

from chemotherapy and radiation treatments for cancer

The following table represents a compilation of both clinical experience and the published research on the impact of common concerner treatments on measuration. Generally, such as harmone levels or follow counts which may not reaccurately reflect reproductive capacity, such as harmone levels or follow counts which responses to the capacity and the capacity of the

Degree of Risk	Treatment Protocol	Common Usage
High Risk	Whole abdominal or pelvic radiation doses > 6 Gy in adult women	Multiple concers
vomen develop	Whate abdominal or pelvic radiation dates ≥ 15 Gy in pare-pubertal girls ≥ 10 Gy in part-pubertal girls	Wilms' tumor, neuroblastama, sarcoma, Hadgkin lymphoma
positiveationt	TBIradiation doses	Bone matrow transplant/stem cell transplant (BMT/SCT)
	CMF, CEF, CAF x 6 cycles in women 40 +	Breast cancer
	Cyclophosphamide 5 g/m² in women 40+	Multiple concers
	Cyclophasphanide 7.5 g/m ² in girls < 20	Non-Hodgkin lymphoma (NHL), neuroblastoma, acute lymphoblastic leukemia (ALL), sorcoma
	Alkylating chemotherapy (e.g., cyclophosphanide, busufan, melaphan) conditioning for transplant	BMT/SCT
	Any alkylating agent (e.g., cyclophosphamide, ifotsamide, bussifian, BCNU, CCNU) + TBI or pelvic radiation	BMI/SCT, avarian cancer, sarcoma, neuroblastoma, Hodgkin lymphoma
	Probable containing procorbazine: MOPP, MVPP, COPP, ChIVPP, CHIVPP/EVA, BEACOPF, MOPP/ABVD, COPP/ABVD	Hodgkin lymphoma
	Cranial/brain radiation ≥40 Gy	Brain tumor
Inter-	CMF or CEF or CAF x 6 cycles in women 30-39	Breast cancer
mediate	AC in women 40+	Breast concer
mediate Risk -30.70%	Whole abdominal or pelvic radiation 10-<15 Gy in prepubertal girls	Wilms' tumor
ofwomen develop	Whole abdominal ar pelvic radiation 5-x10 Gy in postputiental girls	Wilms' tumor, neuroblastama
posi-freatment	Spinol radiation ≥25 Gy	Spinal tumor, brain tumor, neurablastoma, relapsed AU or NHI,
Low Risk	AC in women 30-39	Breast cancer
×20% of	CMF, CEF, or CAF x 6 cycles in women under 30	Breast cancer
women	Non-alkylating chemotherapy: ABVD, CHOP, COP	Hodgkin lymphoma, NHL
develop	AC (anthracycline, cytarabine)	Acute myeloid leukemia (AML)
post-freatment	Multi-agent therapies	ALL
Very Low/	MF (methotrewate, 5-FU)	Breast cancer
No Risk Negligible	Vincriatine (used in multi-agent theropies)	Leukemia, Hodgkinlymphomo, NHL, neuro- blastono, rhabdonyosarcona, Wilms' tumor, Kanadi's sarconar
effection merces	Radioactive ladine	Thyrold cancer
Unknown	Poclitaxel, docetaxel (Taxones used in AC protocols)	Breast concer
Risk	Oxoliplatin	Ovarian concer
	kinglecan	Colon concer
	Bevocizumab (Avastis)	Colon, non-small celliung
	Cetusimab Erb tus	Colon, head & neck
	Treatuzomab (Herceptin)	Breat concer
	Edutob (Tarceva)	Non-small cell lung, poncreatic
	Imptinib (Gleever)	Chronic myeloid leukernia (CMI)
		gastrointestinal stromal tumor (GIST)

Ovarian function after cancer treatments

Predicting ovarian function after radio- / chemotherapy remains a challenge

Ovarian response to COH

AMH & AFC: best markers of poor ovarian response

Broekmans et al., Endocrine Reviews, 2009

113 cycles in 69 couples candidates for GIFT

50 couples in which the women was a cancer survivor

Comparison with cancer patients undergoing IVF-ET before CT/RT

Trend to have a lower No of oocytes recovered in cancer survivors (18.7 \pm 3.2 vs. 14.5 \pm 1.2, *P*= *NS*)

Trend to have a lower No of embryos in cancer survivors $(11.3 \pm 1.9 \text{ vs. } 7.5 \pm 0.7, P = NS)$

Ginsburg et al., Fertil Steril 2001

ART outcomes in cancer survivors vs. with all other infertility patients

	Survivors (n = 53)	All infertility $(n = 7,030)$	Male-factor infertility (n = 1,153)
Female age at cycle start (y)	34.2 (19.3-43.9)	35.8 (19.3-43.9)	35.0 (19.7-43.9)
Day 3 FSH (mIU/mL)	7.3 (2.6-43.0)	7.3 (0.1–52.0)	7.0 (1.0–10.0)
Poor-responder protocol	13 (24.5%)	1,048 (14.9%)	73 (6.3%)
Total dose of gonadotropins (IU)	5,025.0 (1,500.0-13,500.0)	3,300.0 (225.0-12,000.0)	2,700.0 (712.5-10,200.0)
Peak E ₂ (pg/mL)	1,186.5 (14.0-3,980.0)	1,748.0 (<assay-12,385.0)< td=""><td>1,978.0 (<assay-8,856.0)< td=""></assay-8,856.0)<></td></assay-12,385.0)<>	1,978.0 (<assay-8,856.0)< td=""></assay-8,856.0)<>
Days of stimulation to hCG	11.0 (6.0-23.0)	11.0 (5.0-21.0)	10.0 (6.0-20.0)
No. of oocytes retrieved	8 (0–36)	13 (0–68)	14 (0–68)
No. of embryos obtained	4 (0–18)	7 (0–51)	8 (0–51)
No. of embryos transferred	2.0 (0.0-8.0)	2.0 (0.0-10.0)	2.0 (0.0-10.0)

Barton et al., Fertil Steril 2012

ART outcomes in cancer survivors vs. with all other infertility patients

Barton et al., Fertil Steril 2012

ART outcomes in cancer survivors vs. with all other infertility patients

Cancer type		NA	NA
Leukemia	4 (7.5%)		
Hodgkin lymphoma	13 (24.5%)		
Non-Hodgkin lymphoma	5 (9.4%)		
Sarcoma	2 (3.8%)		
Neuroblastoma	1 (1.9%)		
Kidney (Wilm)	3 (5.7%)		
Breast	17 (32.1%)		
Gynecologic	8 (15.1%)		
Treatment type		NA	NA
No alkylating agents nor pelvic/abdominal RT	24 (45.3%)		
Alkylating agents, no pelvic/abdominal RT	18 (34.0%)		
Pelvic/abdominal RT, no chemotherapy	5 (9.4%)		
Any chemotherapy with	6 (11.3%)		
pelvic/abdominal RT			

But heterogenous population (type of cancer and different treatments)

Barton et al., Fertil Steril 2012

Hypothalamic / Pituitary radiotherapy

< 24 Gy: Low risk of amenorrhea (< 20%)

> 24 Gy: High risk of amenorrhea (> 80%)

Restoration of ovulation through exogenous gonadotropin administration

Cervical cancer

GYNECOLOGIC ONCOLOGY

Contents lists available at SciVerse ScienceDirect

Gynecologic Oncology

journal homepage: www.elsevier.com/locate/ygyno

Reproductive outcomes of patients undergoing radical trachelectomy for early-stage cervical cancer

C.H. Kim ^a, N.R. Abu-Rustum ^a, D.S. Chi ^a, G.J. Gardner ^a, M.M. Leitao Jr. ^a, J. Carter ^b, R.R. Barakat ^a, Y. Sonoda ^{a,*}

Methods of conception in women attempting pregnancy.	
Total women attempting conception	35
# successful	23 (66%)
Attempting conception spontaneously	17
# successful	12 (71%)
Attempting conception with ART	18
# successful	11 (61%)

In clinical practice

Oncologist authorization for pregnancy

Fertility evaluation after 6 months of infertility

Evaluation of uterine function if previous pelvic radiotherapy

GnRH antagonist protocol

AMH & pregnancies

	All patients (n = 128/254) ^a	95% CI	≤Age 42 years (n = 70/145)ª	95% CI	>Age 42 years (n = 58/109) ^a	95% CI	Ρ
Clinical pregnancies per cycle	20 (7.9%)	[4.9%-11.9%]	16 (11.0%)	[6.4%-17.3%]	4 (3.7%)	[1.0%–9.1%]	0.031
Clinical pregnancies per patient	20 (15.6%)	[9.8%–23.1%]	16 (22.9%)	[13.7%-34.5%]	4 (6.9%)	[1.9%–16.7%]	0.013
Deliveries after Ist IVF cycle	8 (6.3%)	[2.7%-11.9%]	7 (10.0%)	[4.1%–19.5%]	l (1.7%)	[0.04%-9.2%]	0.055
Deliveries per patient	12 (9.4%)	[4.9%-15.8%]	10 (14.3%)	[7.1%-24.7%]	2 (3.4%)	[0.4%-11.9%]	0.036

Pregnancies are possibly obtained in women having extremely low AMH levels

Weghofer et al., JCE&M, 2011

Live births after Transplantation of frozen ovarian tissue

Worldwide	frozen ovarian cortical tissue	transplantations live bi	rths.			
Case no.	Diagnosis	Age at cryopreservation (y)	Chemotherapy before cryopreservation	Conception	Babies	Authors
1	Hodgkin's lymphoma	25	No	Natural	1	Donnez et al.
2	Neurotumor	19	No	Natural	1	Donnez et al.
3	Non-Hodgkin's lymphoma	28	Yes	IVF-ET	1	Meirow et al.
4	Hodgkin's lymphoma	24	Yes	Natural	2	Demeestere et al
5	Ewing sarcoma	27	No	IVF-ET and natural	2	Andersen et al.
6	Hodgkin's lymphoma	25	Yes	IVF-ET	1	Andersen et al.
7	Premature ovarian failure	25	No	Natural	1	Silber et al.
8	Hodgkin's lymphoma	20	No	Natural	2	Silber et al.
9	Polyangiitis	27	Yes	IVF-ET	1	Piver et al.
10	Breast cancer	36	No	IVF-ET	2	Pellicer et al.
11	Sickle cells	27	No	Natural	1	Piver et al.
12	Thalassemia	19	No	IVF-ET	2	Revel et al.
13	Hodgkin's lymphoma	27	Yes	Ovulation induction	1	Dittrich et al.
Note: Total, 13	9 patients and 18 bables.					
Gynberg, Ova	rian and folicle transplantation. Fertil St	sti 2012.				

13 patients, 18 babies

Grynberg et al., Fertil Steril 2012

Ovarian stimulation after Transplantation of frozen ovarian tissue

Patient	Diagnosis	Chemo before OTC	Stimulation protocol	Foll size (mm) day – 2	E2 (pg/ml) day – 2	LH (mIU/mI) day -2	Oocyte number	Oocyte maturation/ aspect	Fertilization	Day 3 embryos stage/score
PI	Drepanocytosis	No	I : hMG + antag + hCG	19	269	15	0	No	/	
			2: hMG + antag+hCG	17	174	4.4	1	MI	/	
			$3:rec\;FSH+antag+hCG$	20+15	103	5.6	0	No	/	
			4: rec FSH + antag + hCG	17	58	42.5	1	One oocyte: lysis (empty zona pellucida)	/	
			5: spontaneous	17 (day of OPU)	89	86.5	1	One oocyte: lysis (abnormal)	/	
			6: spontaneous	17 (day of OPU)	53	64.7	1	MI: granular PVS	/	
			7: spontaneous	19 (day of OPU)	62	62.8	1	M II, brown, vacuolar, granular	Abnormal	
P 2	Hodgkin's lymphoma	Yes	l : spontaneous	17	276	132	0	No	/	
			2: spontaneous + hCG	21+16	502	15	I	Empty zona pellucida and extruded cytoplasm	/	
			3: spontaneous + hCG	22+19+16	395	29. <mark>3</mark>	0	No	/	
			4: hMG + antag + hCG	18	69	14.7	1	2-cell embryo-like structure	/	
			5: spontaneous + hCG	24	576	30	1	M II, ovoid	No	
			6: hMG + antag + hCG	16	169	4.8	1	MII	No	
P 3	Non-Hodgkin's lymphoma	Yes	I:hMG + antag + hCG	17+10	167		1	мп	Yes	7-cell, grade 2
			2: hMG + antag + hCG	18	164	13.7	0	No	/	
			3: hMG + antag + hCG	18	314	8	- I -	MII	Yes	10-cell, grade 2
			4: hMG + antag + hCG	16	108	7.6	- I -	MII	Yes	morula, grade 2
P 4	Wegener's granulomatosis	No	I : spontaneous + hCG	16+14	122	10.2	0	No	1	
			2: hMG + hCG	16	98	19.2	- I	M II, brown, vacuolar, granular	No	
			3: hMG + antag + hCG	15	77	11.2	1 J	MII, 2 vacuoles	Yes	I 2-cell, grade 2
			4: hMG + antag + hCG	17+15	241	6.0	2	2 MII	l normal+l abnormal	I 2-cell, grade 2
			21 cydes	> = 15 mm (15-27)	58-576		6 empty foll/ 21 cycles	6 'abnormal' oocytes/16 oocytes	3 no fertiliz°/10 MII oocytes	5 embryos
								10 MII oocytes/16 oocytes	2 abnl fertiliz°/10 MII oocytes	
									5 nl fertiliz°/10 Mll	

Dolmans et al., Hum Reprod 2009

Breast cancer survivors

Modified natural cycle

GnRH antagonist protocol

Ovarian stimulation + aromatase inhibitors

Oktay et al., JCE&M 2006

IVM Protocol

Nuclear maturation

Prophase I: VG

MTH Fettlase® Métaphase I: GVBD

Métaphase II: 1st PG extrusion

Cytoplasmic maturation

Stock RNAm and proteins

Support the first steps of embryo development

Genome

In clinical practice

Oncologist authorization for pregnancy (2 – 5 years after chemo)

Fertility evaluation after 6 months of infertility

OBAMA study

134 patients, 26-43 years of age, having undergone chemotherapy for breast cancer

Median follow-up: 39 months

- 38 recurrences
 - 12 patients deceased
- 18 pregnancies and live births in 13 patients
 - All <u>natural</u>
 - ~ 30% in patients with undetectable serum AMH

At least 3 ongoing pregnancies

Hamy et al., unpublished data

OBAMA study

41 ans au diagnostic, G1P1, cycles réguliers
AMH basale = 1.8ng/mL
CCI 25 mm, RE+ RP+ her2-, N-/15
6 cycles de FEC 75, RT, Tamoxifène
Aménorrhée chimio induite pendant 5 mois;
Délai 23 mois après dernière chimiothérapie, grossesse spontanée à l'âge de 43 ans, ANAT 38 ans au diagnostic, G2P2, cycles réguliers
AMH basale = 0.55 ng/mL
Tumeur 55 mm, RE-RP-, her2Chimiothérapie néoadjuvante ECT (anthra cyclo puis taxanes) 8 cures, chir, RT
Aménorrhée chimio induite : 14 mois
Grossesse spontanée à 41 ans, (42 mois après chimiothérapie) suivie ANAT

Malgré AMH restées indétectables après la chimiothérapie....

Fertility preservation

Oocyte cryopreservation

Embryo cryopreservation

Ovarian tissue cryopreservation

Medical treatment

1. Radiotherapy and chemotherapy may significantly alter the ovarian

function and lead to loss of the fertility potential

- 2. Infertility in cancer survivors represents a major concern and patients seeking pregnancy should be offer an evaluation of the follicular ovarian status
- **3**. Since women having undergone gonadotoxic treatments should be considered as poor-responders, IVF-ET should be rapidly proposed
- 4. Efficiency of ART in cancer survivors remains ill-established since there is a remarkable lack of published data
- 5. ART in patients having healed from breast cancer represents a major concern. IVF-ET after modified natural cycle or IVM are currently the only available options to treat their infertility
- 6. A plea for fertility preservation